# Understanding the Effects of Salinity on Pistachios

Louise Ferguson, Blake Sanden and Steve Grattan University of California



# Salinity:

- Amount of salts dissolved in water
- Concentration of salts in solution
  - Irrigation water
  - Soil water

0/6/2018







# Origin of Salinity in Soil and Water

- Chemical weathering of earth minerals
  - rocks and soils
  - sedimentary marine geological formations
- Dissolved over the millennia
- Transported by water
  - terminates in oceans or closed basins
  - concentrated by evaporation
  - percolates into ground



### **Specific Salts in Irrigation Water**

#### <u>Cations = +</u>

0/6/2018

- Na<sup>+</sup> = Sodium
- Ca<sup>2+</sup> = Calcium
- Mg<sup>2+</sup> = Magnesium
- K<sup>+</sup> = Potassium

#### • <u>Anions = -</u>

- $CI^{-}$  = Chloride
- $SO_4^-$  = Sulfate
- $HCO_3^- = Bicarbonate$

• 
$$CO_3^{2-}$$
 = Carbonate

» pH > 8

#### **Boron = micronutrient**

#### **Specific Salts in Irrigation Water**



- $\frac{\text{Anions} = -}{\text{Cl}^2} = \text{Chloride}$

#### **Boron = micronutrient**



## Salinity Units of Concentration

- Weight Basis
- 1 ppm
- 1 mg/l
- 1 mg/kg
- 1% = 10,000 ppm

- Volume Basis
- mg/l
- meq/l
- $1 \text{mmol}_{c} / \text{I} = 1 \text{meq/I}$ 
  - Systeme International d'Unites (SI)

Total dissolved solids (TDS) in irrigation and soil water





# Measuring TDS

- Electrical conductivity (EC)
- Salts dissolve in water (+ or )
- Charged electrode in water
  Anions and cations migrate = electricity
- Water conducts electricity
- Electrical conductivity meter measures it





#### Units for Measuring TDS

- ECw (water) or ECe (soil water extract)
   mmhos/cm = <u>dS/m</u>
  - <u>dS/m</u> x (conversion factor) = TDS
    - Ion, concentration, temperature (25°C)





#### Soil and water salinity cause .....

- Salinization:
  - when the concentration of soluble salts in the root zone are high enough to impede optimum growth.





"Salinity in soil and water is irrevocably associated with irrigated agriculture throughout the world."

#### James E. Ayars, 2003



#### Where is Salinization a Problem ?

- Arid and semi arid regions
- Evapotranspiration > precipitation
- Irrigation is necessary
- World: 12% irrigated land
- USA: 28% of irrigated land
   sharply increased from 1950 2010



### Where in California.....

- Imperial and San Joaquin Valleys
  - Naturally saline soils
    - weathering of marine sediment coastal range origin
  - Lack of a subsurface drainage outlet
  - Over irrigation
  - Drainage water
  - Saline irrigation water
  - Fertilization



Marine origin Closed basin + no drainage Evaporation > transpiration Irrigation + fertilization

#### How does salinity harm plants ?

- Salinization is progressive:
   Irrigation, fertilization, possible soil saturation
- Osmotic effects
  - more common
- Specific ion toxicities
  - visible



#### **Osmotic Effects of Salinity**

- [root cell solute] > soil water ECw
   water moves freely into root
- As soil ECw increases > [root cell solute]

- Roots must compete for water



### **Osmotic Effects of Salinity**

- To restore ability to extract soil water
  - plants adjust osmotically:
    - Glycophytes "sweet" water loving plants
      - synthesize sugars, organic acids to adjust osmotically
      - Uses plants reserves
      - Less reserves available for growth, cropping
      - A smaller plant with less crop
    - Halophytes salt loving plants
      - accumulate salts to adjust osmotically



#### **Differences in Osmotic Adjustment** Halophyte **Glycophyte** 🗇 = CI = NAA R A P ſ 7 A A 6/6/2018 R R A

#### **Glycophytes and Halophytes**



#### Trunk Diameter Increase of 'Kerman' Pistachio as a Function of Increasing Salinity



Soil solution electrical conductivity (dS·m<sup>-1</sup>)

| Farmer      | Eciw<br>(ds/m) | Average<br>Yield 2002<br>(Tones/ha) | Average<br>ECe<br>(ds/m) | Average<br>Irrigation<br>depth<br>(cm) | Irrigation<br>interval<br>(day) | Applied<br>water<br>(m3/ha) | Soil<br>Texture |
|-------------|----------------|-------------------------------------|--------------------------|----------------------------------------|---------------------------------|-----------------------------|-----------------|
| Vakili      | 14.5           | 1.5                                 | 13.14                    | 31.7                                   | 50                              | 22190                       | Si.L            |
| Masoomi     | 22             | 0                                   | 11.51                    | 43                                     | 45                              | 34400                       | L               |
| Mohammadi   | 24             | 3.7                                 | 10.38                    | 56.7                                   | 45                              | 45360                       | L               |
| shakeri     | 11.9           | du : ha                             | 12.0                     | 24.0                                   | 33                              | 17220                       | L               |
| Barkhordari | 8.11           | 1                                   | 15.5                     | 25.75                                  | 46                              | 20600                       | Si.L            |
| Shateri     | 13.57          | 1                                   | 15.12                    | 51.5                                   | 51                              | 36000                       | Si.L            |



#### **Specific Ion Effects of Salinity**



- CI and Na
  - absorbed by roots
  - accumulate in leaves
  - produce "burn"

| NUTRIENT | CRITICAL<br>VALUES | NORMAL<br>RANGE | GREEN<br>TISSUE | NECROTIC<br>TISSUE |
|----------|--------------------|-----------------|-----------------|--------------------|
|          |                    |                 |                 |                    |
| Ν        | 2.3                | 2.5–2.9%        | 2.33            | 2.44               |
| Р        | 0.14               | 0.14–0.17%      | 0.09            | 0.09               |
| K        | 1.0                | 1.0–2.0%        | 1.10            | 0.68               |
| В        | 90 ppm             | 120–250         | 57 ppm          | 87 ppm             |
|          |                    | ppm             |                 |                    |
| Ca       | 1.3% (?)           | 1.3–4.0%        | 1.30 %          | 1.91%              |
| Mg       | 0.6% (?)           | 0.6–1.2 (?)     | 0.59%           | 0.68%              |
| Na       | ?                  | ?               | 6200 ppm        | 12230 ppm          |
| CI       | ?                  | 0.1-0.3 ?       | 1.98 %          | 3.43%              |
| Mn       | 30 ppm             | 30–80 ppm       | 625000          | 60000              |
| Zn       | 7 ppm              | 10–15 ppm       | 7 ppm           | 6 ppm              |
| 6/6/2018 | 4 ppm              | 6–10 ppm        | 2.9 ppm         | 2.9 ppm            |



#### Partitioning of Na<sup>+</sup> between 'Kerman' Pistachio Scion and Rootstock Wood as Influenced by Increasing Salinity Sodium



Soil solution electrical conductivity (dS·m<sup>-1</sup>)

# What do we know about mechanism salinity tolerance pistachios...

- Tolerant to ECe 8.4 dS/m
- Evidence of osmotic adjustment via ion uptake
- Evidence of osmotic adjustment via synthesis of new compounds
- Rootstock differences
- Is salt sensitivity different at different seasonal growth stages?
  - More sensitive early vegetative growth
  - More tolerant later in the season



#### **Tree salt tolerance**



Average Rootzone Salinity (ECe)

### **Pistachio Salinity Management**

- UCB I rootstock
- Monitor soil and keep  $EC_e < 8.4 \text{ dS/m}$
- Budget irrigate using evapotranspiration and pistachio  $\rm K_{\rm c}$
- Calculate leaching fraction
- Avoid soil saturation
- Use good water during early vegetative growth, possibly nut fill



#### **Calculating Leaching Fractions**

- If want soil  $EC_e = dS/m$  of irrigation water - <u>33% leaching fraction</u>
- EC<sub>e</sub> = 2 X (dS/m of Irrigation water)
  <u>10% leaching fraction</u>
- EC<sub>e</sub> = 3 X (dS/m of Irrigation water)
  <u>5% leaching fraction</u>



## Kemal Ataturk Dam, Turkey: 1990

# OroBlanco

# Ag Alert, Dec. 2007

"Grower Mark Watte is seeing a major shift from cotton production to permanent crops like pistachios...." 6/6/2018 24,896 ha





What do we know about salinity tolerance in pistachios...

- Evidence of osmotic adjustment via K<sup>+</sup> ion uptake
- Evidence of osmotic adjustment via synthesis of organic acids
- Differences among rootstocks



What we don't know about salinity tolerance in pistachios....

- How the salts get taken up
- How the salts are transported
- Where are the salts sequestered
  - cellular level
  - whole plant level
- Specific ion level damages growth/yield

#### Industry Plan for Salinity Management

- Investigate the mechanism of salinity tolerance in pistachios
- Obtain and evaluate accessions
  - International contacts
- Aim toward a plant improvement program



**University** of California Cooperative Extension

#### DEPARTMENT OF PLANT SCIENCES

Muchas Gracias

JCDAVIS

College of Agricultural and Environmental Sciences